On a new family related to truncated exponential and Sheffer polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identities on Bell polynomials and Sheffer sequences

In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.

متن کامل

A Simpler Characterization of Sheffer Polynomials

We characterize the Sheffer sequences by a single convolution identity

متن کامل

Riordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials

Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...

متن کامل

The truncated exponential polynomials, the associated Hermite forms and applications

We discuss the properties of the truncated exponential polynomials and develop the theory of new form of Hermite polynomials, which can be constructed using the truncated exponential as a generating function. We derive their explicit forms and comment on their usefulness in applications, with particular reference to the theory of flattened beams, used in optics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.04.028